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Abstract

In this paper, we examine the e�ectiveness of absorbing layers as non-reecting com-
putational boundaries for the Euler equations. The absorbing-layer equations are simply
obtained by splitting the governing equations in the coordinate directions and introducing
absorption coe�cients in each split equation. This methodology is similar to that used by
Berenger for the numerical solutions of Maxwell's equations. Speci�cally, we apply this
methodology to three physical problems { shock-vortex interactions, a plane free shear ow
and an axisymmetric jet { with emphasis on acoustic wave propagation. Our numerical
results indicate that the use of absorbing layers e�ectively minimizes numerical reection in
all three problems considered.
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1. Introduction

The proper treatment of computational boundaries is crucial for any numerical solution to
a set of partial di�erential equations which governs uid motion or wave propagation in a
medium. Various techniques have been developed to minimize the reection of out-going
waves. A review can be found in Givoli (1991). Numerical boundary conditions based on
the characteristics of the relevant linearized equations and their asymptotic solutions in the
far �eld have been widely used. However, such boundary conditions are not satisfactory if
the outow is nonlinear or involves multi-directional waves. As a possible remedy, a bu�er
zone abutting the computational boundary, in which the governing equations are modi�ed,
and whose role is to absorb the incident waves, has been proposed. In this bu�er zone, the
modi�cations have the e�ect of either removing or damping reected waves oriented back
towards the computational domain. Naturally, the bu�er zone solutions themselves need not
necessarily be physical, and they serve only to prevent contamination of the solution in the
physical domain of interest by the reections from the computational boundaries. Various
types of bu�er zone techniques have been used in ow simulations. For example, Colonius
et al.(1993) used bu�er zones in which the solutions were �ltered. In a di�erent approach,
Ta'asan and Nark (1995) modi�ed the governing equations in the bu�er zone to change the
orientation of the characteristics, and make the ow supersonic at the exit plane. Recently,
Berenger(1994) proposed a very e�ective Perfectly Matched Layer technique for Maxwell's
equations. In this approach, the equations governing the so-called matched layer are split
into subcomponents with damping terms which absorb the incident waves almost perfectly.
Following Berenger, Hu (1996), developed an analogous technique for the linearized Euler
equations, and provided analytical results for the case of uniform ow.

In this paper, we follow the operator splitting principle of Berenger (1994) and Hu (1996)
for the equations governing what we call the absorbing layers and examine their e�ectiveness
in the case of shock-vorticity wave interactions, a plane free-shear layer and an axisymmetric
jet. The emphasis is on the e�ectiveness of the the computational boundaries in handling
wave propagation including sound waves. It is shown that the absorbing layer technique is
very e�ective for all three physical problems. The next section describes briey the numerical
models used in this study, followed by the section on results and conclusion.

2. Numerical Models

2.1 Shock Wave Interactions

To verify the applicability of the absorbing boundary condition technique to shock-turbulence
and shock-vortex interaction problems, we choose the numerical model of Erlebacher, Hus-
saini and Shu (1997). This model solves the fully nonlinear compressible Euler equations
along with a time evolution equation for the shock motion for the purpose of �tting the
shock. The outow boundary conditions which minimizes wave reection back into the do-
main of computation are of crucial importance for such problems as they involve long-time
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integrations. The present case focuses on the interaction of a single vorticity wave with
a shock wave, and the results of course carry over simply to a randomly distributed wave
system. The two dimensional Euler equations are written as
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The computational domain has the shock as a boundary on the left and an outow
boundary on the right, and is periodic in the other direction. Fourth order Runge-Kutta
scheme is used for time integration, and the spatial derivatives are discretized by a compact
6th order scheme.

In the absorbing layer at the right boundary, the Euler equations are split into a lo-
cally one-dimensional set with arti�cial damping terms. Consider the pressure equation, for
example, in computational space:
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After operator splitting and addition of damping terms, the pressure equation becomes
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in the absorbing layer. Here, w1 and w2 are velocity components in x- and y-directions,
a1 and a2 are contravariant velocity components (which include the e�ect of grid motion)
in computational space, and p = p1 + p2. Locally one-dimensional equations for the other
variables are constructed in a similar manner. The damping factor �X is zero in a layer
parallel to the X direction; similarly �Y is zero in a layer parallel to the Y direction (see
Figure 1). However, in the corner region both these damping factors are positive.
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2.2 Free Shear Layer

In order to evaluate the performance of the absorbing-layer technique in the case of inviscid
instability waves, we solve the linearized Euler equations in a Cartesian (x; y) coordinate
system. We study the evolution of a Kelvin-Helmholtz instability wave as it propagates
downstream and impinges on the absorbing layers. In this case, the x-momentum equation
reads
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[(U1 + U2) + (U1 � U2) tanh(y)]. Absorbing layers are used at the upper, lower and

right boundaries. Again, the afore-mentioned operator splitting in the absorbing layer leads
to two x-momentum equations:
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where u = u1 + u2. All other equations are treated similarly. These equations are solved
by a low-dissipation and low-dispersion Runge-Kutta scheme which is formally fourth order
accurate (Hu, Hussaini and Manthey, 1996).

For the nonlinear case one uses again an approximate time independent mean ow to
split the Euler equations in the absorbing layer. Thus the stream-wise velocity for two
dimensional ows is decomposed into three components:

u = �U + u1 + u2

where �U is the mean velocity as in the linear case. Then the x-momentumequation is written
as
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This equation is then split into two equations as
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All other equations in the absorbing layer are similarly derived.
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2.3 Axisymmetric Jet

The compressible axisymmetric Euler equations for the jet in the weak conservation form
are : Qt + Fz +Gr = S; where, in the linearized case,
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In the above equations, p, �, mz, mr, E denote the uctuating components of pressure,
density, axial and radial momentum, total energy and H is the mean enthalpy. These equa-
tions have been linearized around the mean velocity (Ur; Uz) represented by an error function
that �ts experimental measurements. The interior equations are simply split into

Qt + Fz = 0; Qt +Gr = S

and they are modi�ed in the absorbing layer as

Q1

t + Fz = ��zQ1 + S1; Q2

t +Gr = ��rQ2 + S2

where Q = Q1 +Q2 and S = S1 + S2. (We used S1 = 0 in this study).

In the nonlinear case, the vectors Q;S; F , and G are de�ned as follows.
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We use the fourth-order MacCormack method which has been successfully used in earlier
studies by Hayder et al. (1996) to solve the linearized Euler equations, and by Hayder et al.
(1993) and Mankbadi et al. (1994) to solve the Navier Stokes equations. The equations are
linearized before splitting to obtain the equations for the absorbing layer. Thus, we get
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where the subscript 0 denotes mean quantities.

3. Results

In the case of the shock-vorticity wave interaction, we consider speci�cally the following
simple wave
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as the upstream condition ahead of the shock. U1 is the upstream mean velocity normal to
the undisturbed shock, ky = k sin�, kx = k cos� (where k is upstream wavenumber), and
� = 0:001 measures the intensity of the wave. Our standard interior domain is 7.4 units long
with 185 uniformly spaced grid points. We used 16 points on the coordinate axis parallel
to the shock. An absorbing layer abuts the right outow boundary. We introduce damping
gradually in order to minimize any reections due to the discretization in the absorbing layer.
Unless otherwise mentioned, we use � = 30�, K = 2, and 25 grid points (= 1 unit in length)
in the bu�er layer for our computations. A snapshot of pressure in the interior domain at
t = 20 is presented in Figure 2, which shows how well the out-going waves are absorbed with
little reection. To measure the contamination due to reection, the solutions are compared
with a reference solution obtained by computing the ow in a much larger domain with the
same spatial and temporal resolution. We follow this methodology for all problems in this
study. Figure 3 compares axial variation in pressure for two di�erent size bu�ers against
the large domain solution at t = 20. Because of modi�cations to the governing equations,
the solution in the bu�er layer is irrelevant. The solution in the interior domain for a bu�er
with 25 points is visually indistinguishable from the larger domain solution. In Figure 4,
we show the rms error (E) in pressure at the ordinate four grid points upstream of the
interface between the computational domain and the absorbing layer as a function of the
layer thickness measured in the number of equidistant points. The error E is de�ned as

E =
100
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j=1(p

r � p)2

N
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where pr is the pressure from the reference solution, jprmaxj is its maximum amplitude and N

is the number of grid points in the y-direction ( N=16 in the current context). E measures
the numerical error in the solution, which includes both direct and induced errors due to the
interaction of residual reections from the outow boundary with the ow and the shock.
As expected, E decreases as the layer width is increased. In Figures 5 and 6, we show the
dependence of numerical errors on the angle of incidence (�) and the wave number (k). The
bu�er layer is more e�ective at lower incidence angle and wavenumbers, although we notice
some cross-overs in our numerical experiments. At later times, a fraction of the reections
from the outow boundary propagates upstream. These waves can then reect back and
forth, and cause what we call induced errors. These sometimes constitute a signi�cant
portion of the errors shown in Figures 4-6 at later times.

The results for the free-shear layer are obtained for upper and lower stream mean veloc-
ities, normalized by the speed of sound, equal to U1 = 0:6 and U2 = 0:2 respectively. The
eigenfunctions of the Kelvin-Helmholtz instability wave given by the linear stability theory
are forced at the inow, with a maximum amplitude � equal to 0:01. We solve the linearized
Euler equations and the solution agrees with the linear theory very well in eigenfunction
and growth rate comparisons. In Figure 7, snapshots of axial velocity (Fig 7a) and pressure
(Fig 7b) are shown, and in Figure 8 we present the amount of reection as a function of
the layer thickness. We observe that for 10 points in the absorbing layer, the amount of
reection (measured four grid points away from the bu�er layer boundary) is less than :03%
of the amplitude of the reference pressure uctuation from the large domain solution. We
also solve nonlinear Euler equations where the nonlinearity in the ow is signi�cant. The
inow excitation amplitude (�) is kept at 0.01, but the interior domain is three times longer.
All other ow parameters are the same as in the linear case. The error in pressure four grid
points away from the bu�er layer in shown in Figure 9. We needed a larger bu�er layer for
the nonlinear ow simulations. At time equal to 3000, errors with 30 and 50 points in the
bu�er layer were 3.5% and 4% respectively. Intuitively one expects that a bu�er layer to be
more e�ective if nonlinear e�ects are smaller. This may be the principal reason for larger
errors in Figure 9 compared to Figure 8. The e�ect of nonlinearity is also shown in Figure
10, where we compare errors for simulations with two di�erent levels of excitation � with a
bu�er of 50 grid points.

Finally, for the case of the excited axisymmetric jet, we assume the mean Mach number
to be 0:6. At the inow, we extrapolated one characteristic variable corresponding to the
outgoing acoustic wave from the interior and computed the other three characteristic vari-
ables at time t using [�; u; v; p] = �Re(q̂ei!t), where q̂ = [�̂; û; v̂; p̂] is the eigenfunction given
by the linear stability theory, � = 10�4, ! = 1:05. A snapshot of pressure is shown in Figure
11. The rms pressure error (E) in the immediate neighborhood (four points away from the
bu�er layer) of the layer interface is plotted in Figure 12 for time equal to upto 50. This
error becomes quasi-periodic and the maximum error for 25 grid points in the absorbing
layer is about 0.015%. Our results for the nonlinear Euler equations are shown in Figure 13.
The domain size is 10 units long for both linearized and nonlinear Euler simulation of the
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excited jet. The physical parameters are the same for both the linearized and the nonlinear
Euler equations for the jet calculations.

4. Conclusions

In conclusion, we �nd the performance of the absorbing-layer technique in the cases of
three physical problems (using three di�erent numerical algorithms) is quite satisfactory.
This technique o�ers a viable alternative to the traditional boundary treatments based on
the linearized characteristics or asymptotic solutions in the far �eld, and also other types of
bu�er layers. It also promises to be accurate and inexpensive for aeroacoustic computations.
Further studies are warranted to put this methodology on a �rm footing.
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Figure 2: A snapshot of pressure
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Figure 5: Angle dependence

0 5 10 15 20
time

10
−4

10
−3

10
−2

10
−1

10
0

% 
err

or 
in 

pre
ssu

re

k = 2
k = 4
k = 8
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Figure 7: Velocity and pressure contours in a free shear layer
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Figure 8: Free shear layer
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Figure 9: Nonlinear free shear layer
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Figure 10: E�ect of excitation level
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Figure 11: A snapshot of pressure in the jet

0.0 10.0 20.0 30.0 40.0 50.0
time

10
-7

10
-5

10
-3

10
-1

% 
Err

or 
in 

pre
ssu

re

n = 10
n = 15
n = 25

Figure 12: Axisymmetric jet (Linearized Euler)
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Figure 13: Axisymmetric jet (Euler)

15


